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The asymptotic behavior in random environments of random flights with stable distribution
laws is analyzed by the field-theoretic renormalization group. Random force fields with isotropic,
divergenceless, curl-free, and unconstrained pair correlation functions with both finite and infinite
correlation length are considered. Stability of the effective distribution laws in the scaling limit is
determined and the scaling dimension of time is calculated in the € = d. — d expansion, where d. is

the critical dimension of the model.

PACS number(s): 05.40.+j, 02.50.Ey

I. INTRODUCTION

Random flights in random environments have at-
tracted increasing attention (see, e.g., the recent re-
view [1]), the emphasis having been in the analysis of
the anomalous diffusion in these systems. In the case
of ordinary Brownian motion the mean-square displace-
ment of the position r of a test particle is proportional to
the elapsed time. In a random environment the motion
of the test particle is affected by a random force field, and
anomalous diffusion, i.e., powerlike asymptotic behavior,

(r2(2)) oc t?, (1)

where the scaling dimension of time v # 1/2 results.
Here, the overbar denotes the average over the step dis-
tribution of the random flights, and the brackets the av-
erage over the distribution of the random force field.

The anomalous diffusive behavior of the random flights
depends heavily on both the tensor structure and the
long-distance asymptotic behavior. of the force correla-
tion function. In the simplest case of Brownian motion
in isotropic random field with short-range correlations
subdiffusive behavior with v < 1/2 is found [2] below the
critical dimension d. = 2, above which normal diffusion
with v = 1/2 takes place.

When independent potential and solenoidal parts of
the random field and powerlike long-range asymptotics
of the correlations are allowed, the anomaly may be ei-
ther subdiffusive or superdiffusive with v > 1/2 [3-5]. In
general, the solenoidal part of the field gives rise to su-
perdiffusive behavior, the potential part to subdiffusive
behavior. The exponent of the assumed powerlike behav-
ior of the long-range correlated random force shifts the
value of the critical dimension, below which the anomaly
occurs. Above and at the critical dimension the limiting
distribution of the random flights is a stable distribution.
Below the critical dimension, however, corrections to the
stable law occur due to the force field fluctuations. A
scaling form for the limiting distribution function P(t,r)
may be obtained from a renormalization-group argument
P(t,r) = t~%Q(rt™), where the scaling function Q(x)
may be calculated in a d. —d expansion below the critical
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dimension.

Recently, the renormalization-group analysis of the
limiting behavior of random flights was applied to the
case of Lévy flights in an isotropic short-range correlated
random field [6]. In the Lévy flights the step distribution
falls off like a power of the step length p() o< n~1~# with
the step index 0 < p < 2. From the Langevin equation
for the position r of a test particle in the external field F

dr
- F(r)+mn

it then follows that the distribution function P(t¢,r) =
d(r — r(t)) obeys the following Fokker-Planck equation:

opP
ot
Here, the fractional power of V2 is defined through the
Fourier transform. The ordinary diffusion term comes

from the small-scale part of the step distribution. When
F = 0, the function

= —D,(-V?)*2P + D,V?P -V .[FP]. (2)

K i t(DykH 4Dk
P(t’r)=/(27r)dek t(D1k*+D3k*)

yields the transition probability of stable stochastic pro-
cesses [7]: D; = 0 corresponds to Brownian motion and
D, = 0 to Lévy flights.

The zero-mean Gaussian distribution of the random
field is determined by the correlation function

(Fi(r)F;(r')) = Cij(r — ). 3)
For the isotropic short-range correlated field the corre-
lation function Cjj(r — r') = gd;;6(r — r’), where the

coupling constant g is a measure of the strength of dis-
order. A perturbative solution of the stochastic prob-
lem (2,3) becomes inconsistent below the critical dimen-
sion d., at and below which contributions from the small-
momentum region in the Fourier-transformed problem
give rise to effective coupling constants growing with
time.

These infrared divergences may be dealt with by the
use of the renormalization group at the critical di-
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mension, when they can be transferred to the large-
momentum region. The results may be extended below
the critical dimension in the form of a d.—d expansion [8].
The critical dimension in this case is d. = 2u — 2, above
which the perturbative solution is consistent and the ef-
fective large-scale solution for the Green function of the
diffusion equation (2) in the random field is the same as
the Green function in zero field, apart from a finite renor-
malization of the diffusion coefficient D;. When d < d.,
the higher-order contributions to the Green function af-
fect its structure and the resulting limiting distribution
is not stable. The scaling dimension of time, however,
turns out to be v = 1/u, independent of the space di-
mensionality [6]. In particular, it is not affected by the
random field. This follows from that the short-range cor-
related random field gives rise to subdiffusive anomalous
behavior, which does not compete with the superdiffu-
sive behavior due to the Lévy flights. When the random
field contains a dominating solenoidal part, however, su-
perdiffusive behavior is expected due to both the Lévy
flights and random force, and it is not obvious what the
scaling dimension of time v will be in this case.

Formally v determines the long-time behavior of the
moments of the displacement: (r™(¢)) o t™ . However,
the mean-square displacement (1) does not exist in the
case of Lévy flights [9]. For Lévy flights with 1 < pu < 2
the first moment (r(¢)) o t¥ is finite. Therefore the long-
time distribution may be characterized by the behavior
of the first moment instead of the mean-square displace-
ment in this case.

In this work I analyze the interplay between the local
and nonlocal terms in the diffusion equation (2) for var-
ious random fields treated in the literature for the case
of Brownian motion. The problem of relative impact to
the asymptotic behavior of local and nonlocal terms with
almost equal scaling dimensions has occurred on several
occasions in the past [5,10]. The interplay of the opera-
tors (—V2)#/2 and V2 in the ¢* field theory has recently
been analyzed [11], and I shall follow the approach of
this work in the subsequent analysis of the random flight
problem.

II. FIELD-THEORETIC RENORMALIZATION
OF THE MODEL

I shall use the field-theoretic version of the renor-
malization group, since in this framework the analy-
sis of the various asymptotic scaling regimes and the
crossover between them may be carried out in a fairly
general form. The Green function of the diffusion equa-
tion (2) averaged over the random force may be written
in the form of a functional integral G(¢t — t',r — r') =
JDeDEDF o(t,r)@(t',r')e® where the “action” is of the
form

5= /drdt(f) [~0. — D1(=92)"/* + D7)
1 _
-5 /drdr' ZFi(r)Cijl(r —r')F;(r')
2,3

+ / drdt FoV . (4)

The standard renormalization theorem [8] is constructed
for interactions local in space, therefore the number of
variables may be reduced by integrating out the random
force field when its correlation function is isotropic with
short range. In this case the action may be cast in the
form

S = /drdt<,5 [—@ — Dy (—V2)#/2 4 DZVZ] @
g ! ~ ! ~
+5 [dradt 3 ot )0p(0, D)ot )OG(E )

(5)

In the generic case the correlation function [3-5] consists
of independent transverse and longitudinal parts: C =
CT + CL, where

dk Tk kmkn
C’Z‘ln(r) =4gr (27r)d k2 (5""' - k2 ) ’
dk ek k,k
L _ mivn
Cmn(r) =4gL (27T)d kza kz . (6)

The correlation function of the isotropic short-range case
is recovered for gr = gr, and a = 0. More sophisticated
correlation functions have also been discussed [12]. How-
ever, the analysis is similar in all cases, therefore I do not
dwell on them here.

For the analysis of the crossover regime the model is
renormalized at d = 2 and p = 2. By the standard power
counting [8] the action (5) is found to be multiplicatively
renormalizable and thus the renormalized action is of the
form

S = /drdtcﬁ[—ﬁt — D1r(=V?)H/2 4 ZzM“ngsz] ©

+92 7,07 / drdtdt' (V@) (6, 1) 2VE) ().  (7)

Here, § =2 — p, € = 2pu — 2 — d, M is the scale-setting
parameter and Z;, Z, are the renormalization constants
of the model, in which all ultraviolet divergences may
be collected in a renormalizable model. It should be
noted that the nonlocal operator —D;(—V?)#/2 is not
renormalized even in the case when the renormalization
is carried out for 4 = 2, when both diffusion terms are
indistinguishable [13].

To facilitate the calculation of the renormalization con-
stants, one of the diffusion terms is regarded as a part of
the interaction. The choice of the scaling parameter M
in the action (7) corresponds to that the term o D;rV?
is treated as an interaction term in the calculation of the
renormalization constants. When dimensional regular-
ization is used and the parameter 6 = 2 — u is small,
the effect of this interaction amounts to the shift of the
location of the poles in € by the quantity [§, where [ is
the number of V2 insertions in the graph considered.
The residues of the poles are the same as in the Brownian
motion problem.

The connection between the renormalized and unrenor-
malized parameters is
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ZlgRMe =g,
ZoDarM~% = D, .

The renormalization-group functions are defined as v; =
—MOn|p,gIn Z;, where the partial derivatives are calcu-
lated with fixed unrenormalized parameters. For the 3
functions

0
ﬂusz UR,
D,g
Be=M2| ¢ 8
=Moo R (8)
D,g

which determine the asymptotic behavior of the effective
coupling constants of the model, the following expres-
sions are established in analogy with the ¢* model [11]:

26urCr
1+¢r’

B¢ = Cré + (1 +Cr)v2p(ur) - (9)

Here, ur = gr(D1 + D2gr)™2, (g = Dygr/D; are the
dimensionless expansion parameters of the model. Re-
markably enough, these B functions are completely ex-
pressed through the renormalization-group functions of
the Brownian motion problem, which are labeled by the
subscript D.

Bu = ur [-€ + v1p(ur) — 27v2p (uRr)] —

III. STABILITY OF THE ASYMPTOTIC
SCALING REGIMES

Equations (8) and (9) for ugr and (g are then lin-
earized near the fixed points determined by the equa-
tions B, = B¢ = 0. A fixed point governs the large-scale
behavior of the model, when the matrix we, = 96,/0b,
where (a,b)=(ur,{r), has eigenvalues with positive real
parts at the fixed point. The trivial fixed point u, = 0,
¢« = 0 is infrared stable and determines the large-scale
asymptotic behavior of the model, when the conditions

g 6>0

e—25<0, (10)
are satisfied. Here, € = 2 — d. At this fixed point nei-
ther the ordinary diffusive term nor the random force
affect the asymptotic behavior of the model. The lim-
iting distribution is therefore the stable distribution of
Lévy flights. This scaling regime shall be referred to as
the ordinary Lévy flights. The nontrivial fixed point is
found from the system of equations

[6 + 'YZD('U':«)] C* = —'72D(u=t) ’ (11)

which have a unique solution in the perturbation theory.
At this fixed point the scaling dimension of time remains
equal to v = 1/u, resulting in superdiffusive behavior.
The scaling function @, however, contains perturbative
corrections and therefore the limiting distribution is not
stable. The stability conditions of this fixed point are

71D(u*) =é£,

[8 + 72D (w)] way1p (us) >0,

8 +v2p () + ux [YVip(us) = 273p(w)] >0, (12)

where the prime denotes the derivative with respect to
u.

For the correlation functions (6), the renormalization-
group functions have been calculated to two-loop or-
der [3,5]. For the isotropic short-range model they are
y1ip(u) = u/2 +u?/2 + O (v®) and v2p(u) = u?/2 +
o (us). From these expressions it can readily be seen
that the conditions (12) are met to two-loop order in the
€ expansion, provided the inequalities

€—26>0, 0+ v2p(ux) >0 (13)

are satisfied. It seems plausible that these conditions
determine the region of stability of the nontrivial fixed
point also in higher orders of the perturbation theory.
At the leading order & + v2p(usx) = & + 2¢%, which
means that the line d < 2, u = 2 lies in the region
of stability of this scaling regime of anomalous Lévy
flights. However, this line must be excluded from the
region of stability, because the model of Brownian mo-
tion in random field [3] is recovered on it with corre-
sponding scaling dimensions and functions. In particu-
lar, v = [2 + vap(us)]™! = 1/2 — €2/2 + O(e?) leading
to subdiffusive behavior. Thus, the scaling functions and
dimensions of this model of random flights are discontin-
uous functions of d and p. It should be noted that the
Lévy flight term —D;(—V?)#/2 determines the asymp-
totic behavior of the model also for y > 2 in the region
0 + v2p(ux) > 0,8 =2 —pu < 0. Due to the random
field, the asymptotic behavior does not reduce to ordi-
nary diffusion when the step index p > 2, as it does in
the free-field case.

For the investigation of the asymptotic behavior of the
model for the values d and p not covered by the condi-
tions (10) and (13), the Lévy flight term is treated as a
part of the interaction. This choice corresponds to the
renormalized action of the form

S = /drdtcﬁ [—at — Dyp MO (—V2)H/2 4 Zzpmvz] ®
+92 7, m¢ / drdtdt (pV @) (t, ) (9VE) (¥, ).

Both diffusion coefficients are renormalized here: D, =
Z2Dsg, D1 = M®Digr. It is convenient to choose the
ratio Dig/D2r = xr as a dimensionless expansion pa-
rameter. The @8 functions are

Bu = ur[—€ + v1ip(ur) — 2720 (uR)]
+26urxr/(1+ XR) ,

Bx = xr[—6 — (1 + xr)v2D(ur)]- (14)

The trivial fixed poiﬁt ux = 0, x4« = 0, which corresponds
to ordinary Brownian motion, is stable for § < 0 and
€ < 0. The fixed point

(15)

X * :Oa ’YID(u*) _2’72D(u*) =¢£

of the g functions (14), which corresponds to anomalous
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TABLE 1. Regions of stability in the (e,d) plane, and the scaling dimension v for random flights in random fields with
short-range (SR) or long-range (LR) correlations. The columns correspond to ordinary Brownian motion (OB), anomalous
Brownian motion (AB), ordinary Lévy flights (OL), and anomalous Lévy flights (AL). The limit distribution is stable in the
OB and OL regimes. The notation v5p = y2p(u«) has been used for brevity.

Random field OB OL AL
v=1/2 v=1/(2+vp) v=1/p v=1/n
Isotropic SR €<0,6<0 6 +v3p <0° €<26,8>0 6+vp >0
ord=0,e>0 §#£0,e>25
sotropic LR e+2a<0 S+y3p <OP €+ 2a < 26 §+vp >0
<0 e+2a>0 6§>0 €+ 2a > 26
Divergenceless SR e<0,6d<0 e>0,¢e>26° €<25,6>0
Divergenceless LR e+2a<0 £+ 2a > 269 e+ 2a < 26
<0 e+2a>0 §>0
Curl-free SR €<0,6<0 €>0,0 =0° €<25,6>0 €>20
6#0,e >0
Curl-free LR e+2a<0 e+2a>0,6 =0° e+2a <26 €+ 2a > 26
§<0 §>0 6#0,e+2a>0
Unconstrained SR €<0,<0 6+ v;p <0° €<28,6>0 §+vp>0
ord=0,e>0 €>28,8#0
Unconstrained LR e+2a<0 §+~v3p < Of e+2a<28 6+vp >0
§<0 e+2a>0 6>0 e+2a> 28

2Here, v3p = 2> + O(&?).

Here, v;p = —a(e + 2)/(1 + 2a) + O((e + 2a)?).
°Here, v = 2/(4 — ¢€).

9Here, v = 2/(4 — € — 2a).

°Strong-coupling regime. The anomalous dimension cannot be calculated in perturbation theory.

THere, v5p = (k — 1 — 20)(e + 2a)/2(1 + 2a) + O((e + 2c)?).

diffusion due to the random field [3], is stable when the
inequalities

0 +v2p(us) <O, U [Y1p (Us) — 272p(us)] > 0

are satisfied. In the €, § expansion the latter condition
implies € > 0. At this fixed point subdiffusive behavior
takes place with v = [24+v2p(u.)] ™! = 1/2—£2/2+0(e3).
For the fixed point of anomalous Lévy flights u, # O,
X+ 7 O the change of variable x — 1/¢ leads to the
previous equations (11) and (12).

When the isotropic correlation function has an infinite
correlation length corresponding to powerlike asympotic
behavior o« k72 at small wave numbers, the interaction
in (5) is nonlocal in space and the action (4) with local
nonlinear terms should be used. The renormalized action
is

S = /drdt¢ [—a,_ — Dy (=V?)H/? ¢ Zzpmvz] @

M—(E+2a)

/drF(—Vz)"‘F + zZ3/? /drdt FoVa.
29r

In this case the perturbative expression of y;p contains
also the linear term, and this leads to drastic changes in
the scaling behavior. For large enough values of a, the
random force gives rise to superdiffusive behavior and
the region of stability of the anomalous Lévy flights lies
in the € > 0, § > 0 quadrant of the (¢,§) plane. Due
to the competition of the two sources of anomalies, su-
perdiffusive behavior with two different scaling dimen-
sions is thus brought about: for anomalous Lévy flights

v = 1/p as before, and for anomalous Brownian motion
v=1/2+ (a/4)(e + 2a)/(1 + 2a) + O[(c + 2a)?] > 1/2,
too.

When the force field is divergenceless, the interaction
term (4) is not renormalized [5] and 4; = 0. Due to
this, there is no regime of anomalous Lévy flights. The
borderline between ordinary Lévy flights and anomalous
Brownian motion is given by € — 26 = 0 in the short-
range case and by € +2a — 2§ = 0 in the long-range case.
The scaling dimension of time for anomalous Brownian
motion may be calculated perturbatively exactly [5] and
v = (2—¢/2)" ! for short-range and v = [2— (¢ +2a)/2] !
for long-rance correlations of random force. The anoma-
lous behavior is thus superdiffusive.

Curl-free force field may be expressed through a po-
tential function 9: F = V. The action (4) is multi-
plicatively renormalizable also in this case [14]. There
is no anomalous Brownian motion, except for the case
¢ = 2, in which the 8 function is trivial: 8, = —eug and
a strong-coupling regime sets in for € + 2a > 0.

In the correlation function (6) of unconstrained force
field both coupling constants are present and the behav-
ior of the system is quite different in the short-range and
long-range cases. In the short-range case the asymptotic
behavior is governed by the isotropic fixed points (11)
and (15) for all g1 g # 0 and g7 g # 0. In the long-range
case the ratio of longitudinal and transverse coupling con-
stants grr/grr = K is invariant under renormalization.
For the anomalous Brownian motion, the character of the
anomaly depends on the ratio x.

The regions of stability and scaling dimension v for the
various cases are summarized in Table I.
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IV. CONCLUSION

In this work the interplay between Lévy flights and
Brownian motion in transport processes in random veloc-
ity fields has been analyzed by the field-theoretic renor-
malization group. It is shown that the deviation from
the ordinary diffusive behavior is brought about by both
the fluctuations of the velocity field and the long-tail step
distribution of the Lévy flights. The ultimate long-time
asymptotic behavior may be both superdiffusive and sub-
diffusive depending on the characteristics of the random

field and the Lévy flights. The limiting distribution of the
random flights is stable in the asymptotic scaling regimes,
in which the nonlinear term of the diffusion equation is
asymptotically irrelevant. In other cases the limiting dis-
tribution has a more complex form for which an £ expan-
sion may be constructed.

The scaling dimension of time v and the regions of sta-
bility of the asymptotic regimes in the leading nontrivial
order of the € expansion are presented for isotropic, diver-
genceless, curl-free, and unconstrained random velocity
fields with short-range or long-range correlations.
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